Abstract

We consider a system of two first-order difference equations in the complex plane. We assume that the matrix of the system is a 1-periodic meromorphic function having two simple poles per period and bounded as Im z → ±∞. We prove the existence and uniqueness of minimal meromorphic solutions, i.e., solutions having simultaneously a minimal set of poles and minimal possible growth as Im z → ±∞. We consider the monodromy matrix representing the shift-byperiod operator in the space of meromorphic solutions and corresponding to a basis built of two minimal solutions. We check that it has the same functional structure as the matrix of the initial system of equations and, in particular, is a meromorphic periodic function with two simple poles per period. This implies that the initial equation is invariant with respect to the monodromization procedure, that is, a natural renormalization procedure arising when trying to extend the Floquet–Bloch theory to difference equations defined on the real line or complex plane and having periodic coefficients. Our initial system itself arises after one renormalization of a self-adjoint difference Schrodinger equation with 1-periodic meromorphic potential bounded at ±i∞ and having two poles per period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call