Abstract

During a survey of farmed and wild crustaceans from India for viruses, spherical baculovirosis otherwise known as Penaeus monodon-type baculovirus (MBV) was detected in field-collected juvenile/sub-adult mud crab, Scylla serrata using a nested polymerase chain reaction (PCR)-based amplification of the hepatopancreatic DNA. Eight out of 115 mud crab (7.0%) examined during the study were found to be positive in the nested PCR resulting in a 361 nt amplicon. Mud crab, S. olivacea and other crustaceans such as marine crab, Portunus sanguinolentus and farmed penaeid shrimp, Penaeus vannamei and P. monodon were tested negative for the virus. Further, degenerate primers reported to amplify polyhedrin protein gene of MBV also showed PCR amplification in one of the MBV-positive crab samples resulting in a 250 nt amplicon. Sequencing of the two target amplicons (MBV- 361 nt and MBV polyhedrin – 216 nt) revealed more than 97.5 % and 92.8% sequence identity, respectively with the Penaeus monodon nudivirus and Penaeus monodon nucleopolyhedrovirus (MBV) reported from shrimp. Further, histological analysis of mud crab revealed nuclear hypertrophy, chromatin margination and intranuclear eosinophilic/basophilic inclusions in tubule epithelium of hepatopancreas. The hepatopancreatic tissue also showed unusually large, eosinophilic/basophilic inclusion-like structures. These inclusions resembled the viral inclusions reported from S. serrata from Australia. This is the first record of monodon-type baculovirus from a crab host and the second from a non-penaeid crustacean. Interestingly, some of the crab samples also showed deeply basophilic intranuclear inclusion-like bodies resembling hepatopancreatic parvovirus group of viruses (HPV). However, none of the crab samples subjected to PCR amplification using HPV-specific primers showed any amplification. The histological observations made in the present study indicate the possibility of the presence of two hepatopancreas-infecting viruses in S. serrata from India.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.