Abstract

Extensional flows and magnetic fields induce similar steady alignment responses when applied to liquid crystals (LCs), liquid crystal polymers (LCPs) and nematic (rigid rod or platelet) suspensions. This observation is explained for LCs by a classical analogy, expressed as a symmetry, between hydrodynamic and magnetic fields in the Leslie-Ericksen theory [de Gennes and Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993); Chandrasekhar, Liquid Crystals (Cambridge University Press, London, 1992)]. Our purpose here is to extend this analogy: first, to LCPs and nematic suspensions where an excluded volume potential couples either to a linear flow [Hess, Z. Naturforsch. A 31a, 1034–1037 (1976); Doi and Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)] or to a magnetic field [Bhandar and Wiest, J. Colloid Interface Sci.257, 371–382 (2003)]; and second, to the strong coupling of excluded volume interactions, planar linear flows, and a coplanar magnetic field. The gene...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.