Abstract

Tin peroxide (SnO2) is one of most potential anode materials for lithium ion batteries with high energy density because of its appropriate (de)lithiation potential and high specific capacity. However, the poor cycling property of SnO2 restricts its wide application in lithium ion battery. Herein, a novel monodispersed porous SnO2 nanospheres/graphene/porous carbon composite electrode with excellent performance is constructed. In this electrode, the SnO2 nanospheres with a diameter of ~60nm are embedded in porous carbon, which is filled between the interlayers of graphene sheets. The carbon can protect the SnO2 nanospheres from contacting with the electrolyte. The pores inside both SnO2 nanospheres and carbon can accommodate the huge volume expansion of SnO2 nanoparticles during charge–discharge process. The graphene sheets can greatly improve the strength, stability and flexibility of the electrode. The framework formed by graphene and porous carbon can successfully prevent the aggregation of SnO2 nanospheres and collapse of SnO2 composite electrode. As a result, the composite electrode shows excellent rate performance, which achieves discharge capacities of 816.3, 704.6, 600 and 459.4mAhg−1 at current densities of 0.2, 0.5, 1 and 2Ag−1 and delivers a capacity of 873.2mAhg−1 after 200 cycles at 0.2Ag−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.