Abstract

The monodispersed mesoporous SiO2@metal-organic framework (MSN@MIL-101(Fe)) composites were prepared by grafting MSN-NH2 onto MIL-101(Fe) particles with a solvothermal method. The adsorption ability of thecomposites was greatly improved compared to that of pristine MSNs or MIL-101(Fe) for phytohormones (Phys). The MSN@MIL-101(Fe) composites were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometer, and mapping analysis. Using MSN@MIL-101(Fe) composites as sorbent, a dispersive solid-phase extraction procedure (dSPE) was developed to extract three endogenous Phys (abscisic acid (ABA), indole-3-aceticacid (IAA), and indole-3-butyric acid (IBA)) and two exogenous Phys (1-naphthylacetic acid (1-NAA) and 2-naphthylacetic acid (2-NAA)) prior to HPLC-DAD analysis. The experimental parameters including sample volume, sorbent amount, adsorption time, adsorption pH, desorption time, and desorption solvent on extraction efficiency were optimized and evaluated. Under optimized conditions, the working range of 0.08 to 0.45ngmL-1 with enrichment factors from 144 to 207 were achieved. The linear range is0.75-200ngmL-1 for IAA, 0.20-200ngmL-1 for ABA, and1.0-200ngmL-1 for IBA, 1-NAA, and 2-NAA. With MSN@MIL-101(Fe) as sorbent for extraction of Phys and determinationby HPLC-DAD, two endogenous Phys (IAA and ABA) were detected from mung bean sprouts which were made in a laboratory, and the results were further confirmed by high-resolution mass spectrometry. The composites can be applied to extract other small molecules, which have similar chemical structures with Phys in biological, environmental, and food samples. Graphical abstract Schematic presentation of a dispersive solid-phase extraction using monodispersed mesoporous SiO2@metal-organic framework composites (MSNs@MIL-101(Fe)) as the sorbent for extraction, clean-up, and preconcentration of phytohormones in mung bean sprouts prior to HPLC-DAD analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.