Abstract

AbstractAn atomic layer deposition (ALD) of monodispersed palladium (Pd) nanograins (≈2 nm) onto electrospun polymeric nanofibers (NF) is presented. By ALD, monodispersed Pd nanograins with (111) exposed facets are decorated on the surface of the free‐standing flexible nanofibrous webs (NW). The Pd nanograin‐decorated free‐standing NW exhibit catalytic reduction of 4‐nitrophenol to 4‐aminophenol. Even under low loading capacity (≈20 µg mg−1), Pd nanograins manifest effective catalytic performance which can be referred to direct exposure of Pd single crystalline highly interactive (111) plains with high surface area on the NW. The Pd nanograins and the interactive sites along with the high surface area NW yield effective catalytic reduction of 4‐nitrophenol to 4‐aminophenol with the catalytic reduction rate of 0.0531 min−1. Pd nanograins display thermally tunable effective catalytic reduction properties with activation energy (Ea) of 1.705 J mol−1 on varying the reaction temperature from 12 to 42 °C. Moreover, Pd nanograin‐decorated NW are exhibited the effective reusable behavior with stable structural integrity even after repeated catalytic reactions. The approach of this study opens up synthesis and surface decoration of metal nanostructures onto NF through ALD with controlled size and facet orientation for designing reusable and free‐standing flexible catalytic nanofibrous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.