Abstract

We demonstrate a new highly sensitive and selective Hg(II) sensor with a graphene-based nanocomposite film as the enhanced sensing platform. The platform was constructed by homogenously distributing monodispersed Au nanoparticles (AuNPs) onto the two-dimensional (2D) graphene nanosheet matrix. Its surface structure and electrochemical performance were systematically investigated. Such a nanostructured composite film platform could combine with the advantages of AuNPs and graphene nanosheets, greatly facilitate electron-transfer processes and the sensing behavior for Hg(II) detection, leading to a remarkably improved sensitivity and selectivity. The detection limit was found to be as low as 6 ppt ( S/ N = 3), much below the guideline value from the World Health Organization (WHO). The interference from other heavy metal ions such as Cu 2+, Cr 3+, Co 2+, Fe 3+, Zn 2+ and I − ions associated with mercury analysis could be effectively inhibited. The performance of new sensor was also evaluated by the direct detection of Hg(II) in river water specimens, suggesting it is very promising for practical environmental monitoring applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.