Abstract
We report core/shell NaYbF(4):Tm(3+)/NaGdF(4) nanocrystals to be used as probes for bimodal near infrared to near infrared (NIR-to-NIR) upconversion photoluminescence (UCPL) and magnetic resonance (MR) imaging. The NaYbF(4):Tm(3+) nanocrystals were previously reported to produce the intense NIR-to-NIR UCPL peaked at ∼800 nm under excitation at ∼975 nm. We have found that the growth of a NaGdF(4) shell on surface of the NaYbF(4):Tm(3+) nanocrystals results in the increase in the intensity of UCPL of Tm(3+) ions by about 3 times. Unlike biexponential PL decay of NaYbF(4):Tm(3+) nanocrystals, the PL decay of NaYbF(4):Tm(3+)/NaGdF(4) core/shell nanocrystals is single exponential and of longer lifetime due to the suppression of surface quenching effects for Tm(3+) PL. The growth of a NaGdF(4) shell on surface of the NaYbF(4):Tm(3+) nanocrystals also provides high MR relaxivity from paramagnetic Gd(3+) ions contained in the shell. The T1-weighted MR signal of the (NaYbF(4):2% Tm(3+))/NaGdF(4) nanoparticles was measured to be about 2.6 mM(-1)s(-1). Due to the combined presence of efficient optical and MR imaging capabilities, nanoprobes based on NaYbF(4):Tm(3+)/NaGdF(4) fluoride nanophosphors can be considered as a promising platform for simultaneous bimodal PL and MR bioimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.