Abstract

We demonstrate that magnetic particles of maghemite (gamma-Fe(2)O(3)) and cobalt ferrite (CoFe(2)O(4)) can be irreversibly attached to colloidal silica that is grafted with 3-mercaptopropyl(trimethoxy)silane (followed by the controlled growth of a silica layer) to obtain stable dispersions of monodisperse colloidal silica spheres that contain a dense shell of ferrite particles at an adjustable distance from the sphere surface. Magnetization of the ferrite shell induces a large dipole moment, and adjusting the thickness of the outer silica layer enables one to tune the contact attraction. This novel type of magnetizable silica colloid exhibits structure formation in a homogeneous field that varies from isotropic distributions to elongated dipolar chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.