Abstract

The preparation of monodisperse and biocompatible water-soluble super-paramagnetic iron oxide nanoparticles (SPIONs) with high sensitivity in Magnetic Resonance Imaging (MRI) represents a challenge for the development of contrast agents. Here we report the synthesis of highly monodisperse citric acid (CA) coated SPIONs with an average diameter of 9 nm and spherical shape, prepared through a suitably optimized coprecipitation method. CA-SPIONs show a high solubility and stability in aqueous medium. Imaging of CA-SPIONs aqueous suspensions was performed in a clinical 1.5-T MRI scanner and different clinical acquisition sequences were exploited. Results show that image contrast can be effectively improved when concentrations of SPIONs lower than 1 ppm are present, and that the echo time is the main parameter influencing the image contrast of SPION-loaded solutions. Moreover, we found that CA-SPIONs show a high value of transverse relaxivity of 128 L mmol -1 s -1 (higher than the commercial contrast agents). Our results are encouraging for the further development of clinical application of SPIONs in MRI, and can represent a starting point for the optimization of clinical imaging exploiting the contrast enhancement of such agents. Namely, it seems possible to achieve an optimal image contrast with low concentration of SPIONs; this could lead to a lower probability of side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.