Abstract
In a T-junction microdroplet generator, the relation between the droplet length and the flow-rate ratio of the immiscible fluids is studied experimentally at both low and high capillary numbers. In particular, different geometries of the T-junctions are designed for monodisperse droplet formation, and the droplet length as a function of the flow-rate ratio is measured for various viscosity of the fluids. It is observed that there is a linear relation between the droplet length and the flow-rate ratio at a low capillary number(Ca⩽0.1), while the droplet length is varying nonlinearly with the flow-rate ratio at a high capillary number(0.1⩽Ca⩽1.0). More importantly, by using the feedback control of the droplet size, a closed-loop control droplet microfluidic system is demonstrated. Especially, by choosing specific control method, good agreements are shown between the predicted and the measured droplet size for a wide range of the capillary numbers of monodisperse droplet production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.