Abstract

AbstractIron oxide@Poly(Glycidylmethacrylate‐methyl methacrylate‐divinyl benzene) magnetic composite core shell microspheres Fe3O4@P(GMA‐MMA‐DVB) with epoxy group on the surface was designed and synthesized by solvothermal process followed by distillation polymerization. The surface epoxy group was modified with amino group of ethylene diamine (EDA) to prepare Fe3O4@P(GMA‐MMA‐DVB)/NH2 microspheres, and then effects of modification on the structure, interfacial behavior and hence demulsification of the amino modified epoxy coating were examined. The prepared magnetic microspheres were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of epoxy group, amino group and Fe3O4 in the final Fe3O4@P(GMA‐MMA‐DVB) and Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres. Our experimental results show that Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres exhibit good interfacial and demulsification properties and able to remove emulsified water from stable emulsion. The resulting microspheres showed excellent magnetic properties and further these can be recycled and reused by magnetic separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.