Abstract

Until recently, First-Order Temporal Logic (FOTL) has been only partially understood. While it is well known that the full logic has no finite axiomatisation, a more detailed analysis of fragments of the logic was not previously available. However, a breakthrough by Hodkinson et al., identifying a finitely axiomatisable fragment, termed the monodic fragment, has led to improved understanding of FOTL. Yet, in order to utilise these theoretical advances, it is important to have appropriate proof techniques for this monodic fragment.In this paper, we modify and extend the clausal temporal resolution technique, originally developed for propositional temporal logics, to enable its use in such monodic fragments. We develop a specific normal form for monodic formulae in FOTL, and provide a complete resolution calculus for formulae in this form. Not only is this clausal resolution technique useful as a practical proof technique for certain monodic classes, but the use of this approach provides us with increased understanding of the monodic fragment. In particular, we here show how several features of monodic FOTL can be established as corollaries of the completeness result for the clausal temporal resolution method. These include definitions of new decidable monodic classes, simplification of existing monodic classes by reductions, and completeness of clausal temporal resolution in the case of monodic logics with expanding domains, a case with much significance in both theory and practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.