Abstract
A new class of enantioselective conjugate addition (ECA) reactions that involve aryl- or alkenylsilyl fluoride reagents and are catalyzed by chiral non-C(2)-symmetric Cu-based N-heterocyclic carbene (NHC) complexes are disclosed. Transformations have been designed based on the principle that a catalytically active chiral NHC-Cu-aryl or NHC-Cu-alkenyl complex can be accessed from reaction of a Cu-halide precursor with in situ-generated aryl- or alkenyltetrafluorosilicate. Reactions proceed in the presence of 1.5 equiv of the aryl- or alkenylsilane reagents and 1.5 equiv of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF). Desired products are isolated in 63-97% yield and 73.5:26.5-98.5:1.5 enantiomeric ratio (47%-97% ee). A major focus of the present studies is the design, evaluation, and development of new chiral imidazolinium salts and their derived NHC-Cu complexes as catalysts that promote reactions of various carbosilanes to a range of electrophilic substrates. Toward this end, nearly 20 new chiral monodentate imidazolinium salts, most of which are non-C(2)-symmetric, have been prepared and fully characterized and their ability to serve as catalysts in the ECA reactions has been investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.