Abstract

Modulation of the ambient redox status by mononuclear phagocytes is central to their role in health and disease. However, little is known about the mechanism of redox regulation during mononuclear phagocyte differentiation and activation, critical cellular steps in innate immunity, and microbial clearance. An important intermediate in GSH-based redox metabolism is homocysteine, which can undergo transmethylation via methionine synthase (MS) or transsulfuration via cystathionine beta-synthase (CBS). The transsulfuration pathway generates cysteine, the limiting reagent in GSH biosynthesis. We now demonstrate that expression of CBS and MS are strongly induced during differentiation of human monocytes and are regulated at the transcriptional and posttranscriptional levels, respectively. The changes in enzyme expression are paralleled by an approximately 150% increase in S-adenosylmethionine (accompanied by a corresponding increase in phospholipid methylation) and a similar increase in GSH. Activation with lipopolysachharide or infection with Mycobacterium smegmatis diminished expression of both enzymes to a significant extent and decreased S-adenosylmethionine concentration by approximately 30% of the control value while GSH and cysteine concentrations increased approximately 100 and 300%, respectively. Blockade of the transsulfuration pathway with propargylglycine suppressed clearance of M. smegmatis by macrophages and inhibited phagolysosomal fusion, whereas N-acetylcysteine promoted phagolysosomal fusion and enhanced mycobacterial clearance 3-fold compared with untreated cells. We posit that regulation of the transsulfuration pathway during monocyte differentiation, activation, and infection can boost host defense against invading pathogens and may represent a heretofore unrecognized antimicrobial therapeutic target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.