Abstract

The new tantalum(II) complex (eta (6)-C 7H 8)TaCl 2(PMe 3) 2 ( 1) was synthesized by the reduction of TaCl 5 with n-butyllithium in the presence of PMe 3 and cycloheptatriene. Compound 1 adopts a four-legged piano stool structure in which the tantalum center is bound to a eta (6)-cycloheptatriene ring in addition to two chlorides and two phosphine ligands in a transoid arrangement. Treatment of 1 with methyllithium results in a loss of the equivalents of HCl and formation of the eta (7)-cycloheptatrienyl complex (eta (7)-C 7H 7)TaCl(PMe 3) 2 ( 2), whereas treatment of 1 with sodium or sodium borohydride affords small amounts of the eta (5)-cycloheptadienyl complex (eta (5)-C 7H 9)TaCl 2(PMe 3) 2 ( 3). Compound 2 adopts a three-legged piano stool structure; the eta (7)-C 7H 7 ring is fully aromatic and planar. The molecular structure of 3 is similar to that of 1, except for the eta (5) binding mode of the seven-membered ring. Treatment of the previously described sandwich compound (C 5Me 5)Ta(C 7H 7) with allyl bromide affords the tantalum(V) product (C 5Me 5)Ta(C 7H 7)Br ( 4), which reacts with LiAlH 4 to give the tantalum(V) hydride (C 5Me 5)Ta(C 7H 7)H ( 5). Compound 4 also reacts with alkylating agents to generate the methyl, allyl, and cyclopropyl complexes (C 5Me 5)Ta(C 7H 7)Me ( 6), (C 5Me 5)Ta(C 7H 7)(eta (1)-CH 2CHCH 2) ( 7), and (C 5Me 5)Ta(C 7H 7)(c-C 3H 5) ( 8). Compounds 4- 8 all adopt bent sandwich structures in which the dihedral angle between the two carbocyclic rings is 34.9 degrees for the bromo compound 4, 26.6 degrees for the hydride 5, 33.1 degrees for the methyl compound 6, 34.2 degrees for the allyl compound 7, and 37.5 degrees for the cyclopropyl compound 8. (1)H and (13)C NMR data are reported for the diamagnetic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.