Abstract

The monocyclic 1,4-benzoquinone, HU-331, the direct oxidation product of cannabidiol, inhibits the catalytic activity of topoisomerase II but without inducing DNA strand breaks or generating free radicals, and unlike many fused-ring quinones exhibits minimal cardiotoxicity. Thus, monocyclic quinones have potential as anticancer agents, and investigation of the structural origins of their biological activity is warranted. New syntheses of cannabidiol and (±)-HU-331 are here reported. Integrated synthetic protocols afforded a wide range of polysubstituted resorcinol derivatives; many of the corresponding novel 2-hydroxy-1,4-benzoquinone derivatives are potent inhibitors of the catalytic activity of topoisomerase II, some more so than HU-331, whose monoterpene unit replaced by a 3-cycloalkyl unit conferred increased antiproliferative properties in cell lines with IC50 values extending below 1 mM, and greater stability in solution than HU-331. The principal pharmacophore of quinones related to HU-331 was identified. Selected monocyclic quinones show potential for the development of new anticancer agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call