Abstract

This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system.

Highlights

  • Stereo vision is a range-sensing technique for distant real-world scenes using multiple images observed at different viewpoints with triangulation, and many stereo matching algorithms have been reported for stereo disparity map estimation [1,2,3,4,5,6,7,8]; they are classified into (1) global algorithms to perform global optimization for the whole image to estimate the disparity of every pixel with numerical methods [9,10,11,12,13,14], and (2) local algorithms with window-based matching that only requires local image features in a finite-size window when computing disparity at a given point with the winner-take-all strategy [15,16,17,18,19,20,21]

  • Compared with accurate but time-consuming global algorithms, local algorithms are much less time-consuming in estimating disparity maps, and many real-time stereo systems capable of executing local algorithms have been reported, such as Graphic Processing Unit (GPU)-based stereo matching [22,23,24,25,26] and Field Programmable Gate Array (FPGA)-based embedded systems [27,28,29,30]

  • Several 3D measurement results were evaluated using the high-frame-rate videos, which were being stored in stereo tracking with multithread gaze control; this evaluation verified the effectiveness of monocular stereo measurement using our catadioptric stereo tracking system with ultrafast viewpoint switching

Read more

Summary

Introduction

Stereo vision is a range-sensing technique for distant real-world scenes using multiple images observed at different viewpoints with triangulation, and many stereo matching algorithms have been reported for stereo disparity map estimation [1,2,3,4,5,6,7,8]; they are classified into (1) global algorithms to perform global optimization for the whole image to estimate the disparity of every pixel with numerical methods [9,10,11,12,13,14], and (2) local algorithms with window-based matching that only requires local image features in a finite-size window when computing disparity at a given point with the winner-take-all strategy [15,16,17,18,19,20,21]. For a wider field of view without decreasing resolution, many active stereo systems that mount cameras on pan-tilt mechanisms have been reported [31,32,33,34]; they are classified into (1) multiple cameras on a single pan-tilt mechanism; and (2) multiple pan-tilt cameras, on which each camera has its pan-tilt mechanism In the former approach, the relative geometrical relationship between cameras are fixed in a way that the camera parameters can be calibrated for stereo measurement; its measurable range in depth is limited because the vergence angle between cameras is fixed. Most catadioptric stereo systems have not been used for an active stereo to expand the field of view for wide-area surveillance This is because catadioptric stereo systems involving large mirrors are too heavy to quickly change their orientations, and it is difficult to control the pan and tilt angles of mirrored virtual cameras independently.

Catadioptric Stereo Tracking Using Multithread Gaze Control
Geometry of Catadioptric Stereo Tracking
Pan-Tilt Mirror System
Catadioptric Mirror System
Mirror Reflection
System Configuration
Implemented Algorithm
Stereo Tracking Process with Multithread Gaze Control
Specifications
Experiments
Dancing Doll in 3D Space
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call