Abstract

In this paper, we present a monocular Simultaneous Localization and Mapping (SLAM) algorithm using high-level object and plane landmarks. The built map is denser, more compact and semantic meaningful compared to feature point based SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single images considering occlusions and semantic constraints. The extracted objects and planes are further optimized with camera poses in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan plane and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM Mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM especially when there is no loop closure, and also generate dense maps robustly in many structured environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.