Abstract
This paper presents a novel material spectroscopy approach to facial presentation–attack–defense (PAD). Best-in-class PAD methods typically detect artifacts in the 3D space. This paper proposes similar features can be achieved in a monocular, single-frame approach by using controlled light. A mathematical model is produced to show how live faces and their spoof counterparts have unique reflectance patterns due to geometry and albedo. A rigorous dataset is collected to evaluate this proposal: 30 diverse adults and their spoofs (paper-mask, display-replay, spandex-mask and COVID mask) under varied pose, position, and lighting for 80,000 unique frames. A panel of 13 texture classifiers are then benchmarked to verify the hypothesis. The experimental results are excellent. The material spectroscopy process enables a conventional MobileNetV3 network to achieve 0.8% average-classification-error rate, outperforming the selected state-of-the-art algorithms. This demonstrates the proposed imaging methodology generates extremely robust features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.