Abstract

This paper presents an approach to estimating the 2.1D sketch from monocular, low-level visual cues. We use a low-level segmenter to partition the image into regions, and, then, estimate their 2.1D sketch, subject to figure-ground and similarity constraints between neighboring regions. The 2.1D sketch assigns a depth ordering to image regions which are expected to correspond to objects and surfaces in the scene. This is cast as a constrained convex optimization problem, and solved within the optimization transfer framework. The optimization objective takes into account the curvature and convexity of parts of region boundaries, appearance, and spatial layout properties of regions. Our new optimization transfer algorithm admits a closed-form expression of the duality gap, and thus allows explicit computation of the achieved accuracy. The algorithm is efficient with quadratic complexity in the number of constraints between image regions. Quantitative and qualitative results on challenging, real-world images of Berkeley segmentation, Geometric Context, and Stanford Make3D datasets demonstrate our high accuracy, efficiency, and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.