Abstract

Abstract. Despite the recent success of learning-based monocular depth estimation algorithms and the release of large-scale datasets for training, the methods are limited to depth map prediction and still struggle to yield reliable results in the 3D space without additional scene cues. Indeed, although state-of-the-art approaches produce quality depth maps, they generally fail to recover the 3D structure of the scene robustly. This work explores supervised CNN architectures for monocular depth estimation and evaluates their potential in 3D reconstruction. Since most available datasets for training are not designed toward this goal and are limited to specific indoor scenarios, a new metric, large-scale synthetic benchmark (ArchDepth) is introduced that renders near real-world scenarios of outdoor scenes. A encoder-decoder architecture is used for training, and the generalization of the approach is evaluated via depth inference in unseen views in synthetic and real-world scenarios. The depth map predictions are also projected in the 3D space using a separate module. Results are qualitatively and quantitatively evaluated and compared with state-of-the-art algorithms for single image 3D scene recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.