Abstract
BackgroundNeurotoxicity of organophosphate pesticide poisoning, a lead cause of death in South Asia, has not been clearly elucidated. Organophosphates inhibit acetylcholinesterase and neurotoxicity is primarily a result of acetylcholine induced hyperactivation in different regions of the brain. Neurotoxicity also results from oxidative stress induced by acetylcholinesterase inhibition in the brain. Determining the severity of acetylcholinesterase inhibition that induces oxidative damage may help in developing strategies that protect the brain from organophosphate induced toxicity. AimTo determine the level of acetylcholinesterase inhibition that induces oxidative stress in the brain following organophosphate pesticide poisoning. MethodsBrains of rats subject to acute monocrotophos poisoning (0.8 LD50 by gavage) were assessed for acetylcholinesterase activity, antioxidant response and oxidative damage 2.5 and 8h after poisoning and on recovery from poisoning 24h later after poisoning. Assessments were made in the cortex, striatum and hippocampus, cholinergic rich regions and cerebellum, targets of organophosphate pesticide poisoning. Analysis was in comparison to non poisoned controls. ResultsHigh acetylcholinesterase activities were noted in striatum followed by hippocampus, cerebellum and cortex. Acute severe monocrotophos poisoning inhibited acetylcholinesterase 87% in striatum, 67% in hippocampus, 58% in cerebellum, 53% in cortex and increased glutathione levels significantly in all brain regions 2.5h after poisoning. Significant lipid peroxidation and antioxidant enzymes were induced 8h after poisoning, directly correlated to high acetylcholinesterase inhibition (>67%). Recovery from monocrotophos poisoning was associated with absence of lipid peroxidation in the brain although acetylcholinesterase inhibition persisted. ConclusionsNeurotoxicity of monocrotophos poisoning is characterized by oxidative damage in regions of the brain that exhibit high acetylcholinesterase activity and severe acetylcholinesterase inhibition. Recovery from poisoning is associated with prolonged induction of antioxidants that protect against oxidative damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.