Abstract

A monoclonal antibody to the glucose transporter has been prepared with band 4.5 (Mr 45,000-65,000) from human erythrocyte ghosts as antigen. This antibody, designated 7F7.5, is of the IgG2b type. The antibody bound exclusively to proteins in the band 4.5 region of immunoblots of human erythrocyte ghosts separated on sodium dodecyl sulfate-polyacrylamide gels. Immobilized 7F7.5 antibody removed glucose transport activity from solubilized alkaline-treated ghosts. The material that was eluted from the immobilized antibody matrix migrated primarily in the band 4.5 region of electrophoretic gels and bound the antibody in immunoblots. To test the specificity of the antibody, glucose and nucleoside transporters in alkaline-treated human erythrocyte ghosts were affinity labeled with [3H]cytochalasin B and [3H]-S-(nitrobenzyl)thioinosine (NBMPR), respectively. Both of these transporters are band 4.5 proteins and "copurify" by DEAE-cellulose chromatography. A filter paper assay was developed to assess the presence of the labeled transporters. Immobilized 7F7.5 antibody bound 99% of the labeled glucose transporter. In contrast, only 3% of the specifically labeled nucleoside transporter bound to the immobilized antibody. Furthermore, the antibody did not remove nucleoside transport or NBMPR binding activities from detergent solution. The antibody recognized two tryptic fragments, Mr 23,000 and 18,000, which contain the cytochalasin B binding site of the glucose transporter. By immunoblot, the monoclonal antibody recognized the glucose transporter in cultured human IM9 lymphocytes, synovial cells, and HBL 100 mammary cells but not cells of murine or rat origin. These results indicate that the glucose and nucleoside transporters are distinct proteins which can be distinguished by monoclonal antibody 7F7.5. The method developed to quantitate covalently labeled glucose and nucleoside transporters should have broad applicability as a rapid and easy method for determining the recovery of affinity-labeled membrane proteins in detergent solution during purification. Because of the location of the epitope, the antibody itself should prove to be a valuable tool in establishing the molecular basis for the function and regulation of the glucose transporter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.