Abstract
Monoclonal antibody therapies mark the new era of targeted treatment for relapse prevention in aquaporin-4 (AQP4)-immunoglobulin G (IgG)-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD). For over a decade, rituximab, an anti-CD20 B-cell-depleting agent, had been the most effectiveness treatment for AQP4-IgG+NMOSD. Tocilizumab, an anti-interleukin-6 receptor, was also observed to be effective. In 2019, several randomized, placebo-controlled trials were completed that demonstrated the remarkable efficacy of eculizumab (anti-C5 complement inhibitor), inebilizumab (anti-CD19 B-cell-depleting agent), and satralizumab (anti-interleukin-6 receptor), leading to the Food and Drug Administration (FDA) approval of specific treatments for AQP4-IgG+NMOSD for the first time. Most recently, ravulizumab (anti-C5 complement inhibitor) was also shown to be highly efficacious in an open-label, external-controlled trial. Although only some patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) warrant immunotherapy, there is currently no FDA-approved treatment for relapse prevention in MOGAD. Observational studies showed that tocilizumab was associated with a decrease in relapses, whereas rituximab seemed to have less robust effectiveness in MOGAD compared to AQP4-IgG+NMOSD. Herein, we review the evidence on the efficacy and safety of each monoclonal antibody therapy used in AQP4-IgG+NMOSD and MOGAD, including special considerations in children and women of childbearing potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.