Abstract

The potential of cationic polyelectrolytes to precipitate host cell and process related impurities was investigated, to replace one or more chromatography steps in monoclonal antibody purification. The impact of antibody isoelectric point, solution properties (pH and ionic strength), and polyelectrolyte properties (structure, molecular weight and pK(a)) on the degree of precipitation was studied. At neutral pH, increasing solution ionic strength impeded the ionic interaction between the polyelectrolyte and impurities, reducing impurity precipitation. Increasing polyelectrolyte molecular weight and pK(a) enabled precipitation of impurities at higher ionic strength. PoIy(arginine) was selected as the preferred polyelectrolyte in unconditioned cell culture fluid. PoIy(arginine) precipitation achieved consistent host cell protein clearance and antibody recovery for multiple antibodies across a wider range of polyelectrolyte concentrations. Poly(arginine) precipitation was evaluated as a flocculant and as a functional replacement for anion exchange chromatography in an antibody purification process. Upstream treatment of cell culture fluid with poly(arginine) resulted in flocculation of solids (cells and cell debris), and antibody recovery and impurity clearance (host cell proteins, DNA and insulin) comparable to the downstream anion exchange chromatography step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call