Abstract

Defining the structure of the human high-affinity receptor for IgE, Fc,RI, is crucial to understand the receptor:ligand interaction, and to develop drugs to prevent IgE-dependent allergic diseases. To this end, a series of four anti-FcepsilonRI monoclonal antibodies (mAbs), including three new mAbs, 47, 54, and 3B4, were used in conjunction with synthetic FcepsilonRI peptides to define functional regions of the Fc IgE-binding site and identify an antagonist of IgE binding. The spatial orientation of the epitopes detected by these antibodies and their relationship to the IgE-binding region of FcepsilonRI was defined by a homology model based on the closely related FcepsilonRIIa. Using recombinant soluble FcRI-alpha as well as FcepsilonRI-alpha expressed on the cell surface, a series of direct and competitive binding experiments indicated that the mAbs detected nonoverlapping epitopes. One antibody (15-1), previously thought to be located close to the IgE-binding site, was precisely mapped to a single loop within the IgE-binding site by both mutagenesis and overlapping synthetic peptides encompassing the entire extracellular domain. A synthetic peptide epsilonRI-11, containing the amino acids 101-120 and the mAb 15-1 epitope, inhibited IgE binding and may form the basis for the development of a useful receptor-based therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.