Abstract

Eight monoclonal antibodies are described which are directed against the renal Na+-D-glucose cotransporter. In porcine renal brush-border membranes, the antibodies either bind to one or to three polypeptides which have been identified as components of the Na+-D-glucose cotransporter (Neeb, M., Kunz, U., and Koepsell, H., (1987) J. Biol. Chem. 262, 10718-10727). Their molecular weights and isoelectric points are 75,000 and pH 5.5, 60,000 and pH 5.2, and 47,000 and pH 5.4. Six antibodies were able to influence Na+-dependent D-glucose uptake and/or Na+-dependent high affinity phlorizin binding. In the presence of Na+, the binding of all antibodies to native membrane proteins was altered by D-glucose but not by D-mannose. Since this effect was observed with D-glucose concentrations less than 1 x 10(-8) M, a high affinity D-glucose-binding site on the D-glucose transporter has been implied. Some of the antibodies probably interact also with other Na+-coupled transporters since their binding was altered by micromolar concentrations of L-lactate, L-alanine, or L-glutamate but not by the nontransported control substances D-alanine and D-glutamate. L-lactate increased the binding of one antibody in the absence but not in the presence of D-glucose. Effects of L-lactate and L-alanine on the binding of another antibody were only observed when D-glucose was present. Thus, some epitopes on the Na+-D-glucose cotransporter are altered by D-glucose and also by substrates of other Na+ cotransporters. This finding suggests functional coupling of different Na+-cotransport systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.