Abstract

Fine structures appearing on the phase transition from h (hexagonal) to c (cubic) boron nitride under high pressure (7.7 GPa) and high temperature (1800–2150 °C) are examined by high-resolution transmission electron microscopy. A prominent contraction of the interplanar spacing between sp2 sheets from 3.33 to 3.10 Å in so-called ‘‘compressed h-BN’’ is attributable to a monoclinic lattice distortion of the residual h-BN, which originates from the difference in the compressibility as well as the thermal expansion between adjoining h- and c-BN grains. The parameters of the monoclinic unit cell are am=4.33, bm=2.50, cm=3.1–3.3 Å, and β=92–95°. Thin plates of h-BN are often folded and the folding also causes the monoclinic structure. The sheet sequence of r (rhombohedral)-BN locally appears when the strong volume shrinkage occurs due to the formation of a c-BN grain. Nanoscale twins appear in resulting c-BN grains, as long as they are small, and w (wurzite)-BN is sometimes included in them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.