Abstract

Recent studies on epistatic networks of model organisms have unveiled a certain type of modular property called monochromaticity in which the networks are clustered into functional modules that interact with each other through the same type of epistasis. Here, we propose and study three epistatic network models that are inspired by the duplication-divergence mechanism to gain insight into the evolutionary basis of monochromaticity and to test if it can be explained as the outcome of a neutral evolutionary hypothesis. We show that the epistatic networks formed by these stochastic evolutionary models have monochromaticity conflict distributions that are centered close to zero and are statistically significantly different from their randomized counterparts. In particular, the last model we propose yields a strictly monochromatic solution. Our results agree with the monochromaticity findings in real organisms and point toward the possible role of a neutral mechanism in the evolution of this phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.