Abstract

A prototype system for breast imaging using monochromatic X-rays has been developed using a scanning multilayer X-ray mirror in combination with a conventional mammography tube and an imaging detector. The X-ray mirror produces a monochromatic fan beam tuned near 19 keV, with an energy bandpass of approximately 1.5 keV. Rotating the mirror about the tube's focal spot in synchronization with the X-ray generator and detector enables the acquisition of monochromatic X-ray images over large areas. The X-ray mirror also can be rotated completely out of the beam so that conventional polychromatic images can be acquired using a K-edge filter, facilitating direct comparison between the two modes of operation. The system was used to image synthetic, tissue-equivalent breast phantoms in order to experimentally quantify the improvements in image quality and dose that can be realized using monochromatic radiation. Nine custom phantoms spanning a range of thicknesses and glandular/adipose ratios, each containing both glandular- and calcification-equivalent features, were used to measure contrast and signal-difference-to-noise ratio (SDNR). Mean glandular dose (MGD) was computed from measured entrance exposure, and a figure-of-merit (FOM) was computed as FOM = SDNR2/MGD in each case. Monochromatic MGD ranges from 0.606 to 0.134 of polychromatic MGD for images having comparable glandular SDNR, depending on breast thickness and glandularity; relative monochromatic dose decreases with increasing glandularity for all thicknesses. Monochromatic FOM values are higher than the corresponding polychromatic FOM values in all but one case. Additionally, the monochromatic contrast for glandular features is higher than the polychromatic contrast in all but one case as well. These results represent important steps toward the realization of clinically practical monochromatic X-ray breast imaging systems having lower dose and better image quality, including those for digital mammography, digital breast tomosynthesis, contrast-enhanced spectral mammography and other modalities, for safer, more accurate breast cancer detection, diagnosis and staging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call