Abstract

AbstractHere improving on our earlier results, we prove that there exists an n0 such that for n⩾n0 in every 2‐coloring of the edges of K there is a monochromatic Hamiltonian 3‐tight Berge cycle. This proves the c=2, t=3, r=4 special case of a conjecture from (P. Dorbec, S. Gravier, and G. N. Sárközy, J Graph Theory 59 (2008), 34–44). © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 288–299, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.