Abstract

Radiative‐hydrodynamics and radiative transfer simulations of astrophysical plasmas require the determination of radiative properties. However, most of the plasma radiative properties are calculated assuming the plasma in coronal equilibrium or local thermodynamic equilibrium regimes that is often not the case for many scenarios. In this work, we present nonlocal thermodynamic equilibrium calculations of radiative opacities of Fe and S and of an astrophysical plasma mixture for temperatures larger than 100 eV. We also analyze the departure from local thermodynamic equilibrium simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.