Abstract

Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP), display no binding affinity for the androgen receptor, yet exert antiandrogenic effects by altering steroid biosynthesis. However, the mechanisms underlying this observed effect are not known. The purpose of this study was to determine the site of MBP action on steroidogenesis in vitro using mouse Leydig tumor cells (MLTC-1). Various concentrations of MBP (0, 50, 100, 200, 400, or 800 μmol/L) were added to the medium for 24 h followed by stimulation with some compounds such as human chorionic gonadotrophin (hCG), cholera toxin (CT), cAMP analog 8-Br-cAMP, 22(R)-hydroxycholesterol (22R-HC), and pregnenolone. Data showed that MBP inhibited the increases in progesterone production induced by hCG and CT. In contrast, the levels of intracellular cAMP remained unaltered. In addition, 8-Br-cAMP-stimulated progesterone production was also suppressed by MBP. These results suggested that the site in the steroid biosynthesis pathway affected by MBP occurs downstream of PKA activation in MLTC-1 cells. Moreover, incubation with 22R-HC and pregnenolone as progesterone precursors for P-450 side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3βHSD) respectively resulted in no marked change in progesterone production, indicating that MBP did not influence P450scc and 3βHSD but did exert an effect on cholesterol transportation into mitochondria, the rate-limiting step. These results were supported by the downregulated StAR expression seen with MBP administration, as StAR is a key factor in this process. Data indicate that MBP interfered with steroid hormone production by affecting StAR expression in MLTC-1 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.