Abstract
Evaluating eye movements in Parkinson's disease (PD) provides valuable insights into the underlying pathophysiological changes. The aim was to investigate the relationship between monoaminergic degeneration and ocular motor abnormalities in de novo PD. Drug-naive PD patients who underwent N-(3-[18 F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane positron emission tomography scans and video-oculography at diagnosis were eligible. Measurements of saccadic accuracy, latency, and smooth pursuit gain and square wave jerk frequency were collected. Patients underwent Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and detailed cognitive tests. We investigated the associations between ocular motor measurements and specific tracer uptake ratios (SUR) in the caudate nucleus, anterior and posterior putamen, thalamus, and dorsal raphe nuclei, along with motor and cognitive symptoms. One-hundred twenty-four subjects were included in this study. Saccadic accuracy was positively associated with parkinsonian motor severity expressed as Hoehn and Yahr stages, MDS-UPDRS Part III scores, and subscores for bradykinesia and rigidity but not with tremor scores (PFDR < 0.05). Saccadic accuracy correlated with poor performances in the Rey-Complex-Figure copy, and latency with the Digit Symbol Coding and the Montreal Cognitive Assessment scores (PFDR < 0.05). Prolonged saccadic latency correlated with reduced thalamic SUR, whereas decreased saccadic accuracy correlated with reduced SUR in the anterior and posterior putamen (PFDR < 0.05). Reduced smooth pursuit gain showed associations with reduced SUR in the dorsal raphe, a serotonin-predominant region, but did not correlate with parkinsonism severity scores. Defective dopaminergic and nondopaminergic neural systems may discretely influence ocular motor function in de novo PD patients. © 2023 International Parkinson and Movement Disorder Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.