Abstract
Depolarization-induced suppression of excitation (DSE) is a major form of cannabinoid-mediated short-term retrograde neuronal plasticity and is found in numerous brain regions. Autaptically cultured murine hippocampal neurons are an architecturally simple model for the study of cannabinoid signaling, including DSE. The transient nature of DSE--tens of seconds--is probably determined by the regulated hydrolysis of the endocannabinoid 2-arachidonoyl glycerol (2-AG). No less than five candidate enzymes have been considered to serve this role: fatty acid amide hydrolase (FAAH), cyclooxygenase-2 (COX-2), monoacylglycerol lipase (MGL), and alpha/beta-hydrolase domain (ABHD) 6 and 12. We previously found that FAAH and COX-2 do not have a role in determining the duration of autaptic DSE. In the current study, we found that two structurally distinct inhibitors of MGL [N-arachidonoyl maleimide and 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184)] prolong DSE in autaptic hippocampal neurons, whereas inhibition of ABHD6 by N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester, carbamic acid (WWL70) had no effect. In addition, we developed antibodies against MGL and ABHD6 and determined their expression in autaptic cultures. MGL is chiefly expressed at presynaptic terminals, optimally positioned to break down 2-AG that has engaged presynaptic CB(1) receptors. ABHD6 is expressed in two distinct locations on autaptic islands, including a prominent localization in some dendrites. In summary, we provide strong pharmacological and anatomical evidence that MGL regulates DSE in autaptic hippocampal neurons and, taken together with other studies, emphasizes that endocannabinoid signaling is terminated in temporally diverse ways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.