Abstract

An attractive two-dimensional semiconductor with tunable direct bandgap and high carrier mobility, black phosphorus (BP), is used in batteries, solar cells, photocatalysis, plasmonics, and optoelectronics. BP is sensitive to ambient conditions, with oxygen playing a critical role in structure degradation. Our simulations show that BP oxidation slows down charge recombination. This is unexpected, since typically charges are trapped and lost on defects. First, BP has no ionic character. It interacts with oxygen and water weakly, experiencing little perturbation to electronic structure. Second, phosphorus supports different oxidation states and binds extraneous atoms avoiding deep defect levels. Third, soft BP structure can accommodate foreign species without disrupting periodic geometry. Finally, BP phonon scattering on defects shortens quantum coherence and suppresses recombination. Thus, oxidation can be regarded as production of a self-protective layer that improves BP properties. These BP features should be common to other monoelemental 2D materials, stimulating energy and electronics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call