Abstract

Mono-, di-, and tetranuclear Ru(II) polypyridine complexes based on the bridging ligand pdtp, where pdtp is 3-(pyridin-2-yl)-as-triazino[5,6-f]1,10-phenanthroline, have been synthesized and characterizated. This asymmetric bridging ligand is composed of two nonequivalent coordinating sites: one involves the phenanthroline moiety, and the other one involves the pyridyltriazine moiety. Electrochemical data show that the first redox process in these complexes is pdtp based and the metal-metal interaction in di- and tetranuclear complexes is very weak. The two oxidations (+1.41 and +1.56 V vs SCE) observed in dinuclear complex 2 are mainly ascribed to the different coordination environments of two metal centers. Absorption spectra are essentially the sum of the spectra of the component monometallic species. The emission spectra are measured both at room temperature and at 80 K in a 4:1 (v/v) EtOH/MeOH matrix. The complexes all display luminescence properties which are close to that featured by the parent [Ru(phen)(3)](2+) species. It is also noted that center-to-periphery energy transfer occurs in the dendritic tetranuclear complex 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.