Abstract

Catalytic hydrotreatment is a promising technology to convert pyrolysis liquids into intermediates with improved properties. Here, we report a catalyst screening study on the catalytic hydrotreatment of pyrolysis liquids using bi- and tri-metallic nickel-based catalysts in a batch autoclave (initial hydrogen pressure of 140 bar, 350 °C, 4 h). The catalysts are characterized by a high nickel metal loading (41 to 57 wt%), promoted by Cu, Pd, Mo, and/or combination thereof, in a SiO2, SiO2-ZrO2, or SiO2-Al2O3 matrix. The hydrotreatment results were compared with a benchmark Ru/C catalyst. The results revealed that the monometallic Ni catalyst is the least active and that particularly the use of Mo as the promoter is favored when considering activity and product properties. For Mo promotion, a product oil with improved properties viz. the highest H/C molar ratio and the lowest coking tendency was obtained. A drawback when using Mo as the promoter is the relatively high methane yield, which is close to that for Ru/C. 1H, 13C-NMR, heteronuclear single quantum coherence (HSQC), and two-dimensional gas chromatography (GC × GC) of the product oils reveal that representative component classes of the sugar fraction of pyrolysis liquids like carbonyl compounds (aldehydes and ketones and carbohydrates) are converted to a large extent. The pyrolytic lignin fraction is less reactive, though some degree of hydrocracking is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.