Abstract

PurposeTo compare diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and tri-exponential models of the diffusion magnetic resonance imaging (MRI) signal for the characterization of renal lesions in relationship to histopathological findings.MethodsSixteen patients planned to undergo nephrectomy for kidney tumour were scanned before surgery at 3 T magnetic resonance imaging (MRI), with T2-weighted imaging, DTI and diffusion weighted imaging (DWI) using ten b-values. DTI parameters (mean diffusivity [MD] and fractional anisotropy [FA]) were obtained by iterative weighted linear least squared fitting of the DTI data and bi-, and tri-exponential fit parameters (Dbi, fstar,and Dtri, ffast,finterm) using a nonlinear fit of the multiple b-value DWI data. Average parameters were calculated for regions of interest, selecting the lesions and healthy kidney tissue. Tumour type and specificities were determined after surgery by histological examination. Mean parameter values of healthy tissue and solid lesions were compared using a Wilcoxon-signed ranked test and MANOVA.ResultsThirteen solid lesions (nine clear cell carcinomas, two papillary renal cell carcinoma, one haemangioma and one oncocytoma) and four cysts were included. The mean MD of solid lesions are significantly (p < 0.05) lower than healthy cortex and medulla, (1.94 ± 0.32*10− 3 mm2/s versus 2.16 ± 0.12*10− 3 mm2/s and 2.21 ± 0.14*10− 3 mm2/s, respectively) whereas ffast is significantly higher (7.30 ± 3.29% versus 4.14 ± 1.92% and 4.57 ± 1.74%) and finterm is significantly lower (18.7 ± 5.02% versus 28.8 ± 5.09% and 26.4 ± 6.65%). Diffusion coefficients were high (≥2.0*10− 3 mm2/s for MD, 1.90*10− 3 mm2/s for Dbi and 1.6*10− 3 mm2/s for Dtri) in cc-RCCs with cystic structures and/or haemorrhaging and low (≤1.80*10− 3 mm2/s for MD, 1.40*10− 3 mm2/s for Dbi and 1.05*10− 3 mm2/s for Dtri) in tumours with necrosis or sarcomatoid differentiation.ConclusionParameters derived from a two- or three-component fit of the diffusion signal are sensitive to histopathological features of kidney lesions.

Highlights

  • IntroductionAs a result of the increased use of abdominal imaging, more (asymptomatic) small (≤ 4 cm) renal masses are incidentally discovered

  • As a result of the increased use of abdominal imaging, more small (≤ 4 cm) renal masses are incidentally discovered

  • The aim of this study is to compare parameters obtained from diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and tri-exponential models of the diffusion signal of kidney lesions, for the characterization of renal lesions

Read more

Summary

Introduction

As a result of the increased use of abdominal imaging, more (asymptomatic) small (≤ 4 cm) renal masses are incidentally discovered. In a series of 173 patients only 58% of kidney tumours < 4 cm were malignant, whereas all kidney tumours > 7 cm were [1]. A substantial amount of incidentally discovered renal masses is not malignant [2,3,4]. One way to realize this is by distinguishing between lesion types and reliably diagnosing benign tumour types, such as oncocytoma, prior to treatment [7]. With currently available clinical imaging modalities, benign renal masses are indistinguishable from malignant renal masses [4, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call