Abstract
Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P-O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P-O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.