Abstract

Highly correlated ab initio coupled-cluster theories (e.g., CCSD(T), CCSDT) were applied on the ground electronic states of Si(2)H(3) and Si(2)H(4), with substantive basis sets. A total of 10 isomers, which include mono- and dibridged structures, were investigated. Scalar relativistic corrections and zero-point vibrational energy corrections were included to predict reliable energetics. For Si(2)H(3), we predict an unanticipated monobridged H(2)Si-H-Si-like structure (C(s), (2)A'') to be the lowest energy isomer, in constrast to previous studies which concluded that either H(3)Si-Si (C(s), (2)A'') or near-planar H(2)Si-SiH (C(1), (2)A) is the global minimum. Our results confirm that the disilene isomer, H(2)Si-SiH(2), is the lowest energy isomer for Si(2)H(4) and that it has a trans-bent structure (C(2)(h), (1)A(g)). In addition to the much studied silylsilylene, H(3)Si-SiH, we also find that a new monobridged isomer H(2)Si-H-SiH (C(1), (1)A, designated 2c) is a minimum on the potential energy surface and that it has comparable stability; both isomers are predicted to lie about 7 kcal/mol above disilene. By means of Fourier transform microwave spectroscopy of a supersonic molecular beam, the rotational spectrum of this novel Si(2)H(4) isomer has recently been measured in the laboratory, as has that of the planar H(2)Si-SiH radical. Harmonic vibrational frequencies as well as infrared intensities of all 10 isomers were determined at the cc-pVTZ CCSD(T) level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.