Abstract

The mono and binary biosorption of Cu(II) ions, Ni(II) ions, and Methylene Blue dye onto raw and pretreated S. cerevisiae was investigated in a batch system. The biosorption mechanism was characterized by FT-IR, XRD, and SEM analyses. The effects of pH, contact time, initial pollutant concentration, temperature, and biosorbent dosage on the biosorption studies were determined. The experimental data were analyzed by Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. The results were compatible with both Langmuir and Freundlich isotherm models. The mean free energy (E) values indicated that the biosorption of Cu(II), Ni(II), and Methylene Blue onto raw and pretreated S. cerevisiae took place by chemical-ion exchange. Kinetic data fitted well into the pseudo-second-order model. The calculated thermodynamic parameters (ΔH, ΔS, and ΔG) showed that the biosorption of Cu(II), Ni(II), and Methylene Blue onto raw and pretreated S. cerevisiae was exothermic and spontaneous. Desorption, ion selectivity, and the effect of ionic strength (NaCl) studies were also conducted. Competitive biosorption of binary mixtures of Cu(II), Ni(II), and MB was investigated in terms of biosorption capacity and found that the biosorption capacity of biosorbent decreased with increasing competing pollutant concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.