Abstract

Replication-coupled gene editing using locked-nucleic-acid-modified single-stranded oligodeoxyribonucleotides (LMOs) can genetically engineer mammalian cells with high precision at single nucleotide resolution. Based on this method, we developed oligonucleotide-directed mutation screening (ODMS) to determine whether variants of uncertain clinical significance of DNA mismatch-repair (MMR) genes can cause Lynch syndrome. In ODMS, the appearance of 6-thioguanine (6TG)-resistant colonies upon introduction of the variant is indicative for defective MMR and hence pathogenicity. Whereas previously mouse embryonic stem cells (mESCs) hemizygous for DNA mismatch-repair (MMR) genes were used, we now show that ODMS can also be applied in wild-type mESCs carrying two functional alleles of each MMR gene. 6TG resistance can result from two possible events: first, the mutation is present in only one allele, which is indicative for dominant-negative activity of the variant; second, both alleles contain the planned modification, which is indicative for a regular loss-of-function variant. Thus, ODMS in wild-type mESCs can discriminate fully disruptive and dominant-negative MMR variants. The feasibility of biallelic targeting suggested that the efficiency of LMO-mediated gene targeting at a non-selectable locus may be enriched in cells that had undergone a simultaneous selectable LMO targeting event. This turned out to be the case and provided a protocol to improve recovery of LMO-mediated gene modification events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.