Abstract

A tridentate ONN donor Schiff-base hydrazone ligand, H2L, was synthesized by the condensation of 2-amino-4-hydrazino-6-methyl pyrimidine with o-hydroxyacetophenone. The structure of the ligand was elucidated by IR and 1H NMR spectra which indicated the presence of three different coordinating groups, the oxygen atom of the phenolic OH group, the nitrogen atom of the azomethine, C=N, group and one of the nitrogen atoms of the heterocyclic ring. The ligand behaves either as a tridentate (N2O sites) neutral, mono- or di-basic ligand or as a bidentate (NO sites) monobasic ligand depending on the pH of the reaction medium and the metal ion. The mass spectrum of the ligand showed the presence of the molecular ion peak. Different types of metal complexes, mononuclear such as [(HL)M(OAc)]·xH2O (M = Cu or Zn), [(HL)M(OAc)H2O]·xH2O (M = Ni or UO2), [(HL)Co(OH2)Cl]·2H2O, [(H2L)FeCl3]·3½H2O, [(L)FeCl(H2O)2]· 2¼H2O, [(HL)L'FeCl(H2O)]·H2O (L' = 8-hydroxyquinoline, 8-HQ), [(HL)L'FeCl]Cl·xH2O (L' = 1,10-phenanthroline, phen, or 2,2'-bipyridyl, bpy) and [(HL)L'Cu]·ClO4 (L' = phen). Also, binuclear complexes with oxalic acid of the type [(HL)ClFe(ox)FeCl(HL)], [(HL)Cu(ox)Cu(HL)] were obtained. The IR spectra of the binuclear complexes indicated that the oxalate anion acts as a bridging tetradentate ligand. Elemental analyses, IR, electronic and ESR spectra as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. Square-planar geometry is suggested for the Cu(II) complex, octahedral geometry for the Fe(III), Ni(II) complexes, tetrahedral geometry for the Co(II) and Zn(II) complexes and pentagonal-bipyramidal geometry for the UO2(VI) complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.