Abstract

Mono-ADP-ribosyltransferase activity has been detected in numerous vertebrate tissues and transferase cDNAs from a few species have recently been cloned. In vitro ADP-ribosylation has been demonstrated with diverse substrates such as phosphorylase kinase, actin, and Gs alpha resulting in the alteration of substrate function. ADP-ribosylation of endogenous target proteins has been observed in chicken heterophils, rat brain, and human platelets, and integrin alpha 7 was found to be the endogenous substrate of the GPI-anchored rabbit skeletal muscle transferase. The reversibility of ADP-ribosylation is made possible by ADP-ribosylarginine hydrolases which have been isolated and cloned from rodent and human tissues. The transferases and hydrolases could in principle form an intracellular ADP-ribosylation regulatory cycle. In the case of the skeletal muscle transferases, however, processing of ADP-ribosylated integrin alpha 7 is carried out by phosphodiesterases and possibly phosphatases (Fig. 1). Most bacterial toxin and eukaryotic mono-ADP-ribosyltransferases, and perhaps other NAD-utilizing enzymes such as the RT6 family of proteins, share a common catalytic-site structure despite a lack of overall sequence identity. The transferases that have been studied thus far possess a critical glutamic acid and other amino acids at the catalytic cleft which function to position NAD for nucleophilic attack at the N-glycosidic linkage for either ADP-ribose transfer or NAD hydrolysis. The amino acid differences among transferases at the active site may reflect different catalytic mechanisms of ADP-ribosylation or may be required for accommodating the different ADP-ribose acceptor molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.