Abstract

Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.