Abstract

Remote-sensing-based machine learning approaches for water quality parameters estimation, Secchi Disk Depth (SDD) and Turbidity, were developed for the Valle de Bravo reservoir in central Mexico. This waterbody is a multipurpose reservoir, which provides drinking water to the metropolitan area of Mexico City. To reveal the water quality status of inland waters in the last decade, evaluation of MERIS imagery is a substantial approach. This study incorporated in-situ collected measurements across the reservoir and remote sensing reflectance data from the Medium Resolution Imaging Spectrometer (MERIS). Machine learning approaches with varying complexities were tested, and the optimal model for SDD and Turbidity was determined. Cross-validation demonstrated that the satellite-based estimates are consistent with the in-situ measurements for both SDD and Turbidity, with R2 values of 0.81 to 0.86 and RMSE of 0.15 m and 0.95 nephelometric turbidity units (NTU). The best model was applied to time series of MERIS images to analyze the spatial and temporal variations of the reservoir’s water quality from 2002 to 2012. Derived analysis revealed yearly patterns caused by dry and rainy seasons and several disruptions were identified. The reservoir varied from trophic to intermittent hypertrophic status, while SDD ranged from 0–1.93 m and Turbidity up to 23.70 NTU. Results suggest the effects of drought events in the years 2006 and 2009 on water quality were correlated with water quality detriment. The water quality displayed slow recovery through 2011–2012. This study demonstrates the usefulness of satellite observations for supporting inland water quality monitoring and water management in this region.

Highlights

  • Inland waters such as lakes, reservoirs, and rivers are important water resources; they regulate climate and hydrological flows; support soil formation, nutrient cycling, and pollination; enable food production and water supply; and provide aesthetic conditions, cultural services, and recreation [1]

  • The selection of diverse DS of Remote Sensing (RS) data for training is an important step which will contribute to the goodness in performance of the models

  • The exception of the Adjacency Effect correction using the Improve Contrast over Ocean and Land processor (ICOL) processor in the DS1 implies an unaccounted error in the developed model that was chosen to perform the multitemporal analysis

Read more

Summary

Introduction

Inland waters such as lakes, reservoirs, and rivers are important water resources; they regulate climate and hydrological flows; support soil formation, nutrient cycling, and pollination; enable food production and water supply; and provide aesthetic conditions, cultural services, and recreation [1] Their protection is vital and their water quality must be assured. Based on a water body’s intended purpose, the parameters of water quality must achieve certain standards. Monitoring these parameters allows for the detection of sudden harmful changes and establishes opportunities for implementing preventive and restorative measures to recover healthy conditions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call