Abstract

Radar altimetry is now commonly used for the monitoring of water levels in large river basins. In this study, an altimetry-based network of virtual stations was defined in the quasi ungauged Ogooué river basin, located in Gabon, Central Africa, using data from seven altimetry missions (Jason-2 and 3, ERS-2, ENVISAT, Cryosat-2, SARAL, Sentinel-3A) from 1995 to 2017. The performance of the five latter altimetry missions to retrieve water stages and discharges was assessed through comparisons against gauge station records. All missions exhibited a good agreement with gauge records, but the most recent missions showed an increase of data availability (only 6 virtual stations (VS) with ERS-2 compared to 16 VS for ENVISAT and SARAL) and accuracy (RMSE lower than 1.05, 0.48 and 0.33 and R² higher than 0.55, 0.83 and 0.91 for ERS-2, ENVISAT and SARAL respectively). The concept of VS is extended to the case of drifting orbits using the data from Cryosat-2 in several close locations. Good agreement was also found with the gauge station in Lambaréné (RMSE = 0.25 m and R2 = 0.96). Very good results were obtained using only one year and a half of Sentinel-3 data (RMSE < 0.41 m and R2 > 0.89). The combination of data from all the radar altimetry missions near Lamabréné resulted in a long-term (May 1995 to August 2017) and significantly improved water-level time series (R² = 0.96 and RMSE = 0.38 m). The increase in data sampling in the river basin leads to a better water level peak to peak characterization and hence to a more accurate annual discharge over the common observation period with only a 1.4 m3·s−1 difference (i.e., 0.03%) between the altimetry-based and the in situ mean annual discharge.

Highlights

  • Inland waters have a crucial role in the Earth’s water cycle through complex processes at interfaces with the atmosphere and oceans

  • As ENVISAT and SARAL missions were orbiting on the same nominal orbit, 15 of them provide a pluri-annual record from June 2002 to October 2010 and from February 2013 to June 2016, one of them from June 2002 to October 2010 and one of them from February 2013 to June 2016

  • This study provides one of the first assessments of the performances of multiple satellite altimetry-based water levels in a river basin, from ERS-2 to Sentinel-3A

Read more

Summary

Introduction

Inland waters have a crucial role in the Earth’s water cycle through complex processes at interfaces with the atmosphere and oceans. In spite of limitations over land, radar altimetry has demonstrated a strong capability to accurately retrieve water levels of large lakes and enclosed seas where the observed surfaces are sufficiently homogeneous [9,10] and in large river basins where the cross-sections between river and altimetry ground-tracks can reach several kilometers [11,12]. These early results were obtained using Geosat and Topex/Poseidon data processed with the Ocean retracking algorithm. All these improvements allow detection of water bodies of a few or below one hundred meters of width (e.g., [14,15,16])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call