Abstract

Aroma, which plays an essential role in food perception and acceptability, depends on various mixture of volatile organic compounds (VOCs). Meanwhile, as a field of metabolomics, VOC analysis is highly important for aroma improvement and discrimination purposes. In this work, VOCs in pear fruits were determined via headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) to study variations among different cultivars and storage stages. In 12 cultivars of pear fruits, a total of 121 VOCs were quantified, including 40 esters, 32 alcohols, 16 aldehydes, 13 alkenes, 11 ketones, 4 acids, and 5 other compounds. The types and amounts of VOCs in different cultivars varied dramatically, which were in the range of 13-71 and 3.63-55.65 mg/kg FW (fresh weight), respectively. The Dr. Guyot cultivar showed the highest level of VOCs, both in type and amount. After 21 days storage at 4 °C, total concentration of VOCs increased from initial levels of 50.76 to 101.33 mg/kg FW. Storage at 20 °C made a larger contribution to production for VOCs than that at 4 °C, resulting in the maximum content of VOCs (117.96 mg/kg FW) in fruit after 14 days storage at 4 °C plus 7 days at 20 °C. During storage, the content of esters showed a gradual increase, while the content of alcohols and aldehydes decreased. Based on the results presented, related alcohols were recognized as the intermediates of conversion from aldehydes to esters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call